Mathieu, Mareike; Hartmann, Nils:
Sub-wavelength patterning of organic monolayers via nonlinear processing with continuous-wave lasers
In: New Journal of Physics (NJP), Vol. 12 (2010), p. 125017
2010article/chapter in journalOA Gold
ChemistryPhysics (incl. Astronomy)Scientific institutes » Center for Nanointegration Duisburg-Essen (CENIDE)
Related: 1 publication(s)
Title in English:
Sub-wavelength patterning of organic monolayers via nonlinear processing with continuous-wave lasers
Author:
Mathieu, MareikeUDE
LSF ID
47029
Other
connected with university
;
Hartmann, NilsUDE
GND
115540466
LSF ID
11099
ORCID
0000-0001-6804-514XORCID iD
Other
connected with university
Year of publication:
2010
Open Access?:
OA Gold
DuEPublico 1 ID
Note:
OA Förderung 2011
Language of text:
English

Abstract in English:

In recent years, nonlinear processing with continuous-wave lasers has been demonstrated to be a facile means of rapid nanopatterning of organic monolayers down to the sub-100 nm range. In this study, we report on laser patterning of thiol-based organic monolayers with sub-wavelength resolution. Au-coated silicon substrates are functionalized with 1-hexadecanethiol. Irradiation with a focused beam of an Ar+ laser operating at λ=514 nm allows one to locally remove the monolayer. Subsequently, the patterns are transferred into the Au film via selective etching in a ferri-/ferrocyanide solution. Despite a 1/e2 spot diameter of about 2.8 μm, structures with lateral dimensions down to 250 nm are fabricated. The underlying nonlinear dependence of the patterning process on laser intensity is traced back to the interplay between the laser-induced transient local temperature rise and the thermally activated desorption of the thiol molecules. A simple thermokinetic analysis of the data allows us to determine the effective kinetic parameters. These results complement our previous work on photothermal laser patterning of ultrathin organic coatings, such as silane-based organic monolayers, organo/silicon interfaces and supported membranes. A general introduction to nonlinear laser processing of organic monolayers is presented.