Ballhorn, Daniel J.; Kautz, Stefanie; Rakotoarivelo, Fanny P.:
Quantitative variability of cyanogenesis in Cathariostachys madagascariensis
In: American journal of primatology : official journal of the American Society of Primatologists, Jg. 71 (2009), Heft 4
2009Artikel/Aufsatz in Zeitschrift
Quantitative variability of cyanogenesis in Cathariostachys madagascariensis
Ballhorn, Daniel J.; Kautz, Stefanie; Rakotoarivelo, Fanny P.


Giant bamboo (Cathariostachys madagascariensis) is a major food plant for three sympatric species of bamboo-eating lemurs (Hapalemur aureus, H. griseus, and Prolemur simus) in the rain forests of southeastern Madagascar. This plant species is strongly cyanogenic. However, quantitative data on cyanide concentration in C. madagascariensis are scarce. Previous studies reported 15 mg cyanide per 100 g fresh shoot material (corresponding to approx. 57 µmol cyanide per gram dry weight). However, we found mean concentrations (±SE) ranging from 139.3±19.32 in ground shoots to 217.7±16.80 µmol cyanide per gram dry weight in branch shoots. Thus, cyanogenesis of C. madagascariensis was up to four times higher than reported before. In contrast to the strongly cyanogenic shoots no cyanide could be detected in differently aged leaves of C. madagascariensis confirming earlier studies. Within individual shoots fine-scaled analysis revealed a characteristic ontogenetic pattern of cyanide accumulation. Highest concentrations were found in youngest parts near the apical meristem, whereas concentrations decreased in older shoot parts. Beyond the general intra-individual variability of cyanogenic features analyses indicated site-specific variability of both, the ontogenetic pattern of cyanide concentration as well as the total amount of cyanide accumulated in shoots. Additionally, analyses of soluble proteins—one important nutritive measure affecting food plant quality—demonstrated a converse quantitative relation of protein concentrations in leaves to cyanide concentration in shoots at the site-specific level. We, thus, suggest integrative analyses on quantitative variation of cyanogenesis together with nutritive plant parameters in future studies. This approach would allow obtaining more detailed insights into spatial variability of giant bamboo's overall browse quality and its impact on lemur herbivores