Naik, Amol Subodh:
Subspace based data driven designs of fault detection systems
Duisburg, Essen, 2010
2010dissertation
Electrical Engineering and Information TechnologyFaculty of Engineering » Engineering and Information Technology » Automatic Control and Complex Systems
Title in English:
Subspace based data driven designs of fault detection systems
Author:
Naik, Amol Subodh
Thesis advisor:
Ding, Steven X.UDE
GND
134302427
LSF ID
2347
ORCID
0000-0002-5149-5918ORCID iD
Other
connected with university
Place of publication:
Duisburg, Essen
Year of publication:
2010
Extent:
XII, 128 S.
DuEPublico 1 ID
Library shelfmark:
Note:
Duisburg, Essen, Univ., Diss., 2010
Language of text:
English
Type of resource:
Text

Abstract:

Die Arbeit konzentriert sich auf fortgeschrittene Methoden zur Fehlererkennung und Diagnose für den Einsatz in Mehrgrößen Systemen. Üblicherweise umfasst die Fehlerdiagnose Entwicklung von mathematischen Modellen zur Beobachtung der Veränderungen in den ursprünglichen Prozessen. Dabei wird ein so genanntes Residuensignal zur von Fehlern benutzt, welches im Fehlerfall einen Ausschlag zeigt. Für Mehrgrößen Systeme, ist es im Allgemeinen schwierig, mathematische Modelle zu erstellen, die mathematisch abgeleitet werden können. Deshalb werden Daten aus dem Prozess, z.B. aus regelmäßigen Messungen, Event-Logs oder Records verwendet, um Beziehungen zwischen Prozess-Eingang und Ausgang abzubilden. Davon ausgehend werden in der vorliegenden Arbeit Verfahren entwickelt um ein Datenbasiertes Fehlererkennungssystem zu generieren, welches ohne Modelidentifikation arbeitet. In dieser Arbeit wird das Problem der Datenbasierten Fehlererkennung weiter im Rahmen der so genannten Parameter Varianten Systeme untersucht. Da viele Prozesse vorübergehenden Parameterschwankungen unterliegen, die nicht als Fehler ausgeschlossen werden können, muss das Fehlererkennung System in der Lage sein, die Veränderungen zu adaptieren. Ein solches lernendes Fehlererkennungssystem ist hier an Hand von zwei effizienten Algorithmen und mit rekursiver Identifikation realisiert. Der Beitrag in dieser Arbeit ist auch ein modifiziertes, optimales Subraum Identifikation basiertes Entwurf. Darüber hinaus wird das Identifikationsverfahren auf die Hauptkomponenten beschränkt und das ursprüngliche Problem wird für die optimale Parameterschätzung als „Closed-Loop“ Identifikation oder Identifikation des Kalman Filters umformuliert. Die gesamte Konstruktion ist numerisch über eine QR Zerlegung numerisch optimiert. Die Arbeit stellt auch Ergebnisse der Applikation verschiedener Algorithmen vor. Als Versuchstand wurden das Tennessee Eastman Prozess und eine kontinuierlich gerührte Tankheizung verwendet. Die Algorithmen dieser Arbeit werden mit dem ursprünglichen und anderen Identifikationsverfahren verglichen.