- GND
- 1036125297
- LSF ID
- 10289
- ORCID
-
0000-0002-7945-1853
- Sonstiges
- der Hochschule zugeordnete*r Autor*in
Abstract:
Die konsequente Weiterentwicklung parallelkinematischer Maschinen (PKM) führt auf eine strukturelle Erweiterung in Form einer Antriebsredundanz. Die wesentlichen Vorteile der Antriebsredundanz sind beispielsweise die Kompensation von Singularitäten im Arbeitsraum, eine erhöhte Endeffektor-Steifigkeit und eine optimale Verteilung der Antriebskräfte. Redundant angetriebene PKM (RA-PKM) sind darum prädestiniert für hochdynamische Pick-and-Place-Bewegungsaufgaben und neue Maschinenkonzepte. Die vorliegende Arbeit befasst sich mit der Frage, welche Konzepte und Verfahren für die Regelung der RA-PKM geeignet sind. Dabei zeigt sich, dass die Beschreibung in Endeffektor-Koordinaten, die Verwendung eines Störgrößenbeobachters auf der Basis des generalisierten Impulses sowie eine modellprädiktive Regelung sehr gute Ergebnisse hinsichtlich der Genauigkeit und des Implementierungs- und Rechenaufwandes ergeben. Dies gilt insbesondere, wenn große Reibkräfte z. B. in den Antrieben zu berücksichtigen sind. Deshalb ist dieses Verfahren für die industrielle Anwendung besonders geeignet. Da für alle hier betrachteten Regelungsverfahren ein mathematisches Modell erforderlich ist, nimmt die Beschreibung der Bewegungsgleichungen in unterschiedlichen Koordinaten einen breiten Raum der Arbeit ein. Es werden die Vor- und Nachteile der verschiedenen Beschreibungsformen wie z. B. die verschiedenen Arten der Singularitäten und die Eliminierung der Zwangskräfte mit Hilfe von Orthogonalprojektionen ausführlich dargestellt. Dabei wurde ein neuartiger Zugang für die Projektion der Bewegungsgleichungen in Endeffektor-Koordinaten hergeleitet. Als erstes Regelungskonzept wird die dezentrale Regelung betrachtet. Es wird gezeigt, wie die hier üblicherweise auftretenden antagonistischen Kräfte mit Hilfe eines Filters kompensiert werden können. Im Anschluss daran wird die große Klasse der modellbasierten Regelungen in den unterschiedlichen Koordinaten untersucht, wobei ein sogenannter Computed Torque Regler (CTC), d. h. die Verwendung einer Vorsteuerung in Form der inversen Dynamik, und ein Augmented PD-Regler (APD) zum Einsatz kommen. Die Gelenkgeschwindigkeiten werden mit Hilfe eines High-Gain-Beobachters und die Störgrößen mit Hilfe eines Störgrößenbeobachters rekonstruiert. Zum Schluss wird die schon erwähnte nichtlineare modellprädiktive Regelung in Endeffektor-Koordinaten beschrieben, wobei der zukünftige Trajektorienfehler durch eine optimale Stellgröße minimiert wird. Die resultierende Reglerstruktur hat die Form eines klassischen APD-Reglers mit variablen Verstärkungen. Die Reglereinstellung erfolgt durch die Prädiktion vollkommen automatisch. Die entwickelten Regler und Methoden wurden anhand eines ebenen Mechanismus mit zwei Freiheitsgraden unter Verwendung industrieller Torque-Motoren erprobt.