Feuerbach, Jan; Loepp, Benedikt; Barbu, Catalin-Mihai; Ziegler, Jürgen:
Enhancing an Interactive Recommendation System with Review-based Information Filtering
In: Interfaces and Human Decision Making for Recommender Systems : Proceedings of the 4th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems co-located with ACM Conference on Recommender Systems (RecSys 2017) / Brusilovsky, Peter; de Gemmis, Marco; Felfernig, Alexander; Lops, Pasquale; O'Donovan, John; Tintarev, Nava; Willemsen, Martijn C. (Hrsg.). - IntRS 2017, 4th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems, 27.08.2017, Como, Italy - Aachen: RWTH Aachen, 2017 - (CEUR workshop proceedings ; 1884), S. 2 - 9
2017Buchaufsatz/Kapitel in TagungsbandOA Gold
InformatikFakultät für Ingenieurwissenschaften » Informatik und Angewandte Kognitionswissenschaft » Informatik » Interaktive Systeme / Interaktionsdesign
Titel in Englisch:
Enhancing an Interactive Recommendation System with Review-based Information Filtering
Autor*in:
Feuerbach, JanUDE
LSF ID
59291
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Loepp, BenediktUDE
GND
1232038113
LSF ID
54109
ORCID
0000-0001-9059-5324ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Barbu, Catalin-MihaiUDE
LSF ID
58102
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Ziegler, JürgenUDE
GND
1015876811
LSF ID
3881
ORCID
0000-0001-9603-5272ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Open Access?:
OA Gold
Notiz:
OA platinum
Sprache des Textes:
Englisch
Schlagwort, Thema:
Interactive Recommending ; Faceted Filtering ; User Reviews

Abstract in Englisch:

Integrating interactive faceted filtering with intelligent recommendation techniques has shown to be a promising means for increasing user control in Recommender Systems. In this paper, we extend the concept of blended recommending by automatically extracting meaningful facets from social media by means of Natural Language Processing. Concretely, we allow users to influence the recommendations by selecting facet values and weighting them based on information other users provided in their reviews. We conducted a user study with an interactive recommender implemented in the hotel domain. This evaluation shows that users are consequently able to find items fitting interests that are typically difficult to take into account when only structured content data is available. For instance, the extracted facets representing the opinions of hotel visitors make it possible to effectively search for hotels with comfortable beds or that are located in quiet surroundings without having to read the user reviews.