Tigges, Sebastian; Wöhrl, Nicolas; Hagemann, Ulrich; Ney, Marcel; Lorke, Axel:
The effect of metal-oxide incorporation on the morphology of carbon nanostructures
In: Journal of Physics D : Applied Physics, Jg. 53 (2020), Heft 14, S. 145206
2020Artikel/Aufsatz in ZeitschriftOA Hybrid
Physik (inkl. Astronomie)Forschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)Fakultät für Physik » Experimentalphysik
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
The effect of metal-oxide incorporation on the morphology of carbon nanostructures
Autor*in:
Tigges, SebastianUDE
GND
1243283602
LSF ID
59251
ORCID
0000-0002-4313-846XORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Wöhrl, NicolasUDE
GND
143076957
LSF ID
10496
ORCID
0000-0002-4232-9379ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Hagemann, UlrichUDE
GND
1067571620
LSF ID
51063
ORCID
0000-0002-1880-6550ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Ney, MarcelUDE
LSF ID
61004
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Lorke, AxelUDE
GND
1042619697
LSF ID
2509
ORCID
0000-0002-0405-7720ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2020
Open Access?:
OA Hybrid
Web of Science ID
Scopus ID
Sprache des Textes:
Englisch
Schlagwort, Thema:
Carbon nanostructures ; Carbon nanowalls ; Metal oxide incorporation ; Morphology transition ; Nanoflakes ; Nanorods ; Plasma-enhanced chemical vapor deposition

Abstract in Englisch:

Metal-organic, single-source, low-temperature, morphology-controlled growth of carbon nanostructures is achieved, using an inductively coupled plasma-enhanced chemical vapor deposition system. Three distinctive morphologies, namely nanoflakes, nanowalls (CNWs) and nanorods (and intermediates between these morphologies), can be reproducibly deposited, depending on the process parameters. The synthesized structures can be described as hybrid materials consisting of metal oxide incorporated in a carbon matrix material. Since the incorporation of metal oxide into the carbon structure significantly influences their growth, the synthesis cannot be described solely with the existing models for the growth of CNWs. Optical emission spectroscopy is used to measure the relative number density of suspected growth and etching species in the plasma, while physical and chemical surface analysis techniques (scanning electron microscopy, Raman spectroscopy, scanning Auger microscopy and x-ray photoelectron spectroscopy) were employed to characterize the properties of the different nanostructures. Therefore, by using methods for both plasma and surface characterization, the growth process can be understood. The precursor dissociation in the plasma can be directly linked to the deposited morphology, as the incorporation of Al₂O₃ into the nanostructures is found to be a major cause for the transition between morphologies, by changing the dominant type of defect within the carbon structure.