Lipkowicz, Timo; Nativel, Damien; Cooper, Sean; Wlokas, Irenäus; Fikri, Mustapha; Petersen, Eric; Schulz, Christof; Kempf, Andreas Markus:
Numerical Investigation of Remote Ignition in Shock Tubes
In: Flow, Turbulence and Combustion, Jg. 106 (2021), Heft 2, S. 471 - 498
2021Artikel/Aufsatz in ZeitschriftOA Hybrid
MaschinenbauFakultät für Ingenieurwissenschaften » Maschinenbau und Verfahrenstechnik » Institut für Energie- und Material-Prozesse (EMPI) » FluiddynamikFakultät für Ingenieurwissenschaften » Maschinenbau und Verfahrenstechnik » Institut für Energie- und Material-Prozesse (EMPI) » Reaktive Fluide
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Numerical Investigation of Remote Ignition in Shock Tubes
Autor*in:
Lipkowicz, TimoUDE
LSF ID
58354
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Nativel, DamienUDE
LSF ID
58712
ORCID
0000-0001-5338-2215ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Cooper, Sean
;
Wlokas, IrenäusUDE
LSF ID
1635
ORCID
0000-0003-0390-1106ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Fikri, MustaphaUDE
LSF ID
15728
ORCID
0000-0001-6761-1808ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Petersen, Eric
;
Schulz, ChristofUDE
GND
1148037985
LSF ID
48807
ORCID
0000-0002-6879-4826ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Kempf, Andreas MarkusUDE
GND
1141085682
LSF ID
53356
ORCID
0000-0003-3627-4524ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2021
Open Access?:
OA Hybrid
Web of Science ID
Scopus ID
Sprache des Textes:
Englisch
Schlagwort, Thema:
Computational fluid dynamics ; Detailed chemistry ; Remote ignition ; Shock tube

Abstract in Englisch:

Highly resolved two- and three-dimensional computational fluid dynamics (CFD) simulations are presented for shock-tube experiments containing hydrogen/oxygen (H₂/O₂) mixtures, to investigate mechanisms leading to remote ignition. The results of the reactive cases are compared against experimental results from Meyer and Oppenheim (Proc Combust Inst 13(1): 1153–1164, 1971. https://doi.org/10.1016/s0082-0784(71)80112-1) and Hanson et al. (Combust Flame 160(9): 1550–1558, 2013. https://doi.org/10.1016/j.combustflame.2013.03.026). The results of the non-reactive case are compared against shock tube experiments, recently carried out in Duisburg and Texas. The computational domain covers the end-wall region of the shock tube and applies high order numerics featuring an all-speed approximate Riemann scheme, combined with a 5th order interpolation scheme. Direct chemistry is employed using detailed reaction mechanisms with 11 species and up to 40 reactions, on a grid with up to 2.2 billion cells. Additional two-dimensional simulations are performed for non-reactive conditions to validate the treatment of boundary-layer effects at the inlet of the computational domain. The computational domain covers a region at the end part of the shock tube. The ignition process is analyzed by fields of localized, expected ignition times. Instantaneous fields of temperature, pressure, entropy, and dissipation rate are presented to explain the flow dynamics, specifically in the case of a bifurcated reflected shock. In all cases regions with locally increased temperatures were observed, reducing the local ignition-delay time in areas away from the end wall significantly, thus compensating for the late compression by the reflected shock and therefore leading for first ignition at a remote location, i.e., away from the end wall where the ignition would occur under ideal conditions. In cases without a bifurcated reflected shock, the temperature increase results from shock attenuation. In cases with a bifurcated reflected shock, the formation of a second normal shock and shear near the slip line is found to be crucial for the remote ignition to take place. Overall, the two- and three-dimensional simulations were found to qualitatively explain the occurrence of remote ignition and to be quantitatively correct, implying that they include the correct physics.