Kerski, Jens; Lochner, Pia; Ludwig, A.; Wieck, A.D.; Kurzmann, Annika; Lorke, Axel; Geller, Martin Paul:
Quantum Sensor for Nanoscale Defect Characterization
In: Physical Review Applied, Jg. 15 (2021), Heft 2, S. 024029
2021Artikel/Aufsatz in ZeitschriftOA Hybrid
Physik (inkl. Astronomie)Fakultät für Physik » Experimentalphysik
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Quantum Sensor for Nanoscale Defect Characterization
Autor*in:
Kerski, JensUDE
GND
1305712102
LSF ID
58878
ORCID
0000-0002-5676-4988ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Lochner, PiaUDE
LSF ID
58936
ORCID
0000-0002-1674-6646ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Ludwig, A.
ORCID
0000-0002-2871-7789ORCID iD
;
Wieck, A.D.
ORCID
0000-0001-9776-2922ORCID iD
;
Kurzmann, AnnikaUDE
LSF ID
55038
ORCID
0000-0001-5947-0400ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Lorke, AxelUDE
GND
1042619697
LSF ID
2509
ORCID
0000-0002-0405-7720ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Geller, Martin PaulUDE
LSF ID
49871
ORCID
0000-0003-3796-1908ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2021
Open Access?:
OA Hybrid
Web of Science ID
Scopus ID
Sprache des Textes:
Englisch

Abstract in Englisch:

The optical and electronic properties of semiconductors are strongly affected by structural and stoichiometric defects. The precise incorporation of dopants and the control of impurities are essentially what makes semiconductors useful materials for a broad range of devices. The standard defect and impurity characterization methods are sensitive only on a macroscopic scale, like the most widely used method of deep-level transient spectroscopy (DLTS). We perform time-resolved measurements of the resonance fluorescence of a single self-assembled (In,Ga)As quantum dot (QD) at low temperatures (4.2K). By pulsing the applied gate voltage, we are able to selectively occupy and unoccupy individual defects in the vicinity of the dot. We address the exciton transition of the QD with a tunable diode laser. Our time-resolved measurements exhibit a shift of the resonance energy of the optical transition. We attribute this to a change of the electric field in the dot’s vicinity, caused by electrons tunneling from a reservoir to the defect sites. Furthermore, we are able to characterize the defects concerning their position and activation energy by modeling our experimental data. Our results thus demonstrate how a quantum dot can be used as a quantum sensor to characterize the position and activation energy of individual shallow defects on the nanoscale.