Nadarajah, Ruksan; Landers, Joachim; Salamon, Soma; Koch, David; Tahir, Shabbir; Doñate-Buendía, Carlos; Zingsem, Benjamin; Dunin-Borkowski, Rafal E.; Donner, Wolfgang; Farle, Michael; Wende, Heiko; Gökce, Bilal:
Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles
In: Scientific Reports, Jg. 11 (2021), Heft 1, Artikel 13719
2021Artikel/Aufsatz in ZeitschriftOA Gold
Physik (inkl. Astronomie)Fakultät für PhysikForschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)
Damit verbunden: 2 Publikation(en)
Titel in Englisch:
Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles
Autor*in:
Nadarajah, Ruksan
;
Landers, JoachimUDE
LSF ID
54351
ORCID
0000-0002-4506-6383ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Salamon, SomaUDE
GND
117475950X
LSF ID
56994
ORCID
0000-0002-8661-6038ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Koch, David
;
Tahir, Shabbir
;
Doñate-Buendía, Carlos
;
Zingsem, BenjaminUDE
LSF ID
59828
ORCID
0000-0002-9899-2700ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Dunin-Borkowski, Rafal E.
;
Donner, Wolfgang
;
Farle, MichaelUDE
GND
1029383219
LSF ID
3560
ORCID
0000-0002-1864-3261ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Wende, HeikoUDE
GND
12115226X
LSF ID
47290
ORCID
0000-0001-8395-3541ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Gökce, BilalUDE
LSF ID
56377
ORCID
0000-0001-6368-9659ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
korrespondierende*r Autor*in
Erscheinungsjahr:
2021
Open Access?:
OA Gold
Web of Science ID
PubMed ID
Scopus ID
Notiz:
CA Gökce
Sprache des Textes:
Englisch

Abstract in Englisch:

The development of magnetocaloric materials represents an approach to enable efficient and environmentally friendly refrigeration. It is envisioned as a key technology to reduce CO₂ emissions of air conditioning and cooling systems. Fe-Rh has been shown to be one of the best-suited materials in terms of heat exchange per material volume. However, the Fe-Rh magnetocaloric response depends on its composition. Hence, the adaptation of material processing routes that preserve the Fe-Rh magnetocaloric response in the generated structures is a fundamental step towards the industrial development of this cooling technology. To address this challenge, the temperature-dependent properties of laser synthesized Fe-Rh nanoparticles and the laser printing of Fe-Rh nanoparticle inks are studied to generate 2D magnetocaloric structures that are potentially interesting for applications such as waste heat management of compact electrical appliances or thermal diodes, switches, and printable magnetocaloric media. The magnetization and temperature dependence of the ink’s γ-FeRh to B2-FeRh magnetic transition is analyzed throughout the complete process, finding a linear increase of the magnetization M (0.8 T, 300 K) up to 96 Am²/kg with ca. 90% of the γ-FeRh being transformed permanently into the B2-phase. In 2D structures, magnetization values of M (0.8 T, 300 K) ≈ 11 Am²/kg could be reached by laser sintering, yielding partial conversion to the B2-phase equivalent to long-time heating temperature of app. 600 K, via this treatment. Thus, the proposed procedure constitutes a robust route to achieve the generation of magnetocaloric structures.