Staab, Franziska; Yang, Yangyiwei; Foya, Eren; Bruder, Enrico; Zingsem, Benjamin; Adabifiroozjaei, Esmaeil; Nasiou, Despoina; Skokov, Konstantin; Koch, David; Farle, Michael; Dunin-Borkowski, Rafal E.; Molina-Luna, Leopoldo; Gutfleisch, Oliver; Xu, Bai-Xiang; Durst, Karsten:
Influence of amorphous phase on coercivity in SmCo₅-Cu nanocomposites
In: Scripta Materialia, Band 240 (2024), Artikel 115808
2024Artikel/Aufsatz in ZeitschriftOA Grün
MaterialtechnikPhysik (inkl. Astronomie)Forschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)Fakultät für Physik
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Influence of amorphous phase on coercivity in SmCo₅-Cu nanocomposites
Autor*in:
Staab, Franziska
;
Yang, Yangyiwei
Sonstiges
korrespondierende*r Autor*in
;
Foya, Eren
;
Bruder, Enrico
;
Zingsem, BenjaminUDE
LSF ID
59828
ORCID
0000-0002-9899-2700ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Adabifiroozjaei, Esmaeil
;
Nasiou, Despoina
;
Skokov, Konstantin
;
Koch, David
;
Farle, MichaelUDE
GND
1029383219
LSF ID
3560
ORCID
0000-0002-1864-3261ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Dunin-Borkowski, Rafal E.
;
Molina-Luna, Leopoldo
;
Gutfleisch, Oliver
;
Xu, Bai-Xiang
;
Durst, Karsten
Erscheinungsjahr:
2024
Open Access?:
OA Grün
arXiv.org ID
Scopus ID
Sprache des Textes:
Englisch
Schlagwort, Thema:
Amorphous SmCo5 ; High-pressure torsion ; Micromagnetic simulation ; Severe plastic deformation ; SmCo5-Cu nanocomposites
Ressourcentyp:
Text

Abstract in Englisch:

Severe plastic deformation of powder blends consisting of SmCo5-Cu results in magnetically hardened nanocomposite bulk materials. The microstructure is continuously refined with increasing torsional deformation, yet, coercivity saturates at a certain level of strain. Transmission electron microscopy (TEM) investigation of the microstructure reveals a partial amorphization of the SmCo5 phase due to high-pressure torsion by 20 applied rotations. In this amorphous matrix nanocrystals are embedded. The effect of these experimentally observed microstructural features on the magnetic properties are investigated by micromagnetic simulations, which show that an increasing volume fraction of nanocrystals is beneficial for higher coercivities. For a fixed volume fraction of nanocrystals the simulations reveal an increasing coercivity with decreasing the size of the nanocrystals due to increasing number of interfaces acting as pinning sites. Furthermore, our micromagnetic simulations disclose the mechanisms of the saturation and decline of magnetic hardening due to the strain induced by high-pressure torsion. The calculated coercivity fits very well to the experimentally observed coercivity of Hc = 1:34T. The knowledge can also be used to develop and provide optimization strategies from the microstructure perspective.