Kox, Tim; Spohr, Eckhard; Kenmoe, Stephane:
Impact of Solvation on the Structure and Reactivity of the Co₃O₄ (001)/H₂O Interface : Insights From Molecular Dynamics Simulations
In: Frontiers in Energy Research, Band 8 (2020), Artikel 604799
2020Artikel/Aufsatz in ZeitschriftOA Gold
ChemieFakultät für Chemie » Theoretische ChemieForschungszentren » Center for Computational Sciences and Simulation (CCSS)
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Impact of Solvation on the Structure and Reactivity of the Co₃O₄ (001)/H₂O Interface : Insights From Molecular Dynamics Simulations
Autor*in:
Kox, Tim
;
Spohr, EckhardUDE
GND
143257005
LSF ID
49123
ORCID
0000-0001-8148-7575ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Kenmoe, StephaneUDE
GND
1121141544
LSF ID
55953
ORCID
0000-0003-3622-2716ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2020
Open Access?:
OA Gold
DuEPublico 2 ID
Web of Science ID
Scopus ID
Notiz:
OA Förderung 2020
Sprache des Textes:
Englisch
Schlagwort, Thema:
ab initio molecular dynamics ; coordination number, Cobalt oxide, Spinel ; reactivity ; solvation ; surface termination

Abstract in Englisch:

The spinel Co₃O₄ has many beneficial properties for potential use in catalysis. In operando, water is always present and alters the properties of the catalyst. We have used ab initio molecular dynamics to understand the effect of water and solvation on the structure and reactivity of the Co₃O₄ (001) A-type and B-type surface terminations. Water adsorbs on both terminations via a partial dissociative mode, and the A-termination is seen to be more reactive. On this surface, a higher degree of dissociation is observed in the topmost layers of the crystal in contact with water. Water dissociates more frequently on the Co²⁺ sites (about 75%) than on the adjacent Co³⁺ sites, where the degree of dissociation is about 50%. Increasing water coverage does not change the degree of water dissociation significantly. OH− adsorption on the Co²⁺ sites leads to a reduction of the amount of reconstruction and relaxation of the surface relative to the clean surface at room temperature. Proton transfer within the water films and between water molecules and surface has localized character. The B-terminated interface is less dynamic, and water forms epitactic layers on top of the Co³⁺ sites, with a dissociation degree of about 25% in the contact layer.