Kleinherbers, Eric; Stegmann, Philipp; Kurzmann, Annika; Geller, Martin Paul; Lorke, Axel; König, Jürgen:
Pushing the Limits in Real-Time Measurements of Quantum Dynamics
In: Physical Review Letters, Jg. 128 (2022), Heft 8, Artikel 087701
2022Artikel/Aufsatz in ZeitschriftOA Grün
Physik (inkl. Astronomie)Fakultät für PhysikForschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Pushing the Limits in Real-Time Measurements of Quantum Dynamics
Autor*in:
Kleinherbers, EricUDE
GND
1259093700
LSF ID
58881
ORCID
0000-0003-2249-5510ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Stegmann, PhilippUDE
LSF ID
57938
ORCID
0000-0003-4859-2095ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Kurzmann, AnnikaUDE
LSF ID
55038
ORCID
0000-0001-5947-0400ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Geller, Martin PaulUDE
LSF ID
49871
ORCID
0000-0003-3796-1908ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Lorke, AxelUDE
GND
1042619697
LSF ID
2509
ORCID
0000-0002-0405-7720ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
König, JürgenUDE
GND
120876213
LSF ID
49640
ORCID
0000-0003-3836-4611ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2022
Open Access?:
OA Grün
arXiv.org ID
Web of Science ID
PubMed ID
Sprache des Textes:
Englisch

Abstract in Englisch:

Time-resolved studies of quantum systems are the key to understand quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as random telegraph signal, is expected to yield maximal physical insight. However, the signal suffers from both systematic errors, such as a limited time resolution and noise from the measurement apparatus, as well as statistical errors due to a limited amount of data. Here we demonstrate that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude. The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunnelling through a self-assembled quantum dot. Thus, factorial cumulants push the limits in the analysis of random telegraph data which represent a wide class of experiments in physics, chemistry, engineering and life sciences.