Underberg, Martin; Prenting, Markus; Sieber, Moritz; Schimek, Sebastian; Paschereit, Christian O.; Hülser, Tim; Endres, Torsten; Schulz, Christof; Wiggers, Hartmut; Schnurre, Sophie Marie:
A hydrogen-based burner concept for pilot-scale spray-flame synthesis of nanoparticles : Investigation of flames and iron oxide product materials
In: Applications in Energy and Combustion Science, Band 15 (2023), Artikel 100165
2023Artikel/Aufsatz in ZeitschriftOA Gold
MaschinenbauFakultät für Ingenieurwissenschaften » Maschinenbau und Verfahrenstechnik » Institut für Energie- und Material-Prozesse (EMPI) » Reaktive FluideFakultät für Ingenieurwissenschaften » Maschinenbau und Verfahrenstechnik » Institut für Energie- und UmweltverfahrenstechnikForschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
A hydrogen-based burner concept for pilot-scale spray-flame synthesis of nanoparticles : Investigation of flames and iron oxide product materials
Autor*in:
Underberg, Martin
Sonstiges
korrespondierende*r Autor*in
;
Prenting, MarkusUDE
LSF ID
59215
ORCID
0000-0003-1245-2517ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Sieber, Moritz
;
Schimek, Sebastian
;
Paschereit, Christian O.
;
Hülser, TimUDE
LSF ID
48386
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Endres, TorstenUDE
GND
1036337731
LSF ID
56680
ORCID
0000-0001-8100-3921ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Schulz, ChristofUDE
GND
1148037985
LSF ID
48807
ORCID
0000-0002-6879-4826ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Wiggers, HartmutUDE
GND
172637171
LSF ID
1643
ORCID
0000-0001-8487-9937ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Schnurre, Sophie Marie
Erscheinungsjahr:
2023
Open Access?:
OA Gold
Web of Science ID
Scopus ID
Notiz:
CA extern
Sprache des Textes:
Englisch
Schlagwort, Thema:
Hydrogen combustion ; Iron oxide ; Nanoparticle synthesis ; NO-LIF thermometry ; Pilot scale ; Spray combustion

Abstract in Englisch:

Nanoparticle synthesis in spray flames is a flexible method to produce materials with a wide range of compositions, morphologies, and properties. On the road to industrial application, the transfer from laboratory to pilot scale is an important intermediate step. In the present paper, nanoparticle synthesis based on spray combustion combined with a novel burner concept based on a fuel/air pilot flame ignited by an electrical heat ring is presented. When operating with H₂, the burner concept allows nanoparticle production with a sustainable fuel. The temperature profile in the flame is one of the key factors determining the kinetics of precursor decomposition, particle formation, and growth. In this work, we have studied the gas-phase temperature in the reactive zone using non-intrusive multi-line NO-LIF temperature imaging. A solution of iron nitrate nonahydrate dissolved in ethanol was used as nanoparticle precursor mixture, atomized by a commercial two-fluid nozzle, and ignited by the premixed flame to synthesize iron-oxide nanoparticles. The burner can be operated at different conditions to direct the properties of the nanoparticles produced. To this goal, process conditions were varied in a targeted manner. In addition to variations in fuel gas and flow rates, the use of compressed air instead of pure O₂ as a dispersion gas has also been investigated. The effects of these variations on temperature distribution and materials properties have been investigated. It has been determined that the dispersion gas mass flow has relatively small influence on the materials properties, while higher flame temperatures are advantageous to suppress the often-undesired liquid-to-particle synthesis pathway.