Jüngst, Niklas; Skenderovic, Ivan; Südholt, Benjamin; Smallwood, G.J.; Kruis, Frank Einar; Kaiser, Sebastian:
High-speed imaging and statistics of puffing and micro-exploding droplets in spray-flame synthesis
In: Applications in Energy and Combustion Science, Band 15 (2023), Artikel 100167
2023Artikel/Aufsatz in ZeitschriftOA Gold
MaterialtechnikFakultät für Ingenieurwissenschaften » Maschinenbau und Verfahrenstechnik » Institut für Energie- und Material-Prozesse (EMPI)Fakultät für Ingenieurwissenschaften » Elektrotechnik und Informationstechnik » NanostrukturtechnikForschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
High-speed imaging and statistics of puffing and micro-exploding droplets in spray-flame synthesis
Autor*in:
Jüngst, NiklasUDE
GND
1241252629
LSF ID
58863
ORCID
0000-0002-6240-8322ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
korrespondierende*r Autor*in
;
Skenderovic, IvanUDE
GND
1208734628
LSF ID
58613
ORCID
0000-0002-7815-6414ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Südholt, BenjaminUDE
LSF ID
63149
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Smallwood, G.J.
;
Kruis, Frank EinarUDE
GND
1208325426
LSF ID
3631
ORCID
0000-0001-5008-8133ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Kaiser, SebastianUDE
GND
1298293995
LSF ID
52841
ORCID
0000-0002-9544-5728ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2023
Open Access?:
OA Gold
Web of Science ID
Scopus ID
Notiz:
CA Jüngst
Sprache des Textes:
Englisch
Schlagwort, Thema:
Droplet puffing and micro-explosion ; High-speed imaging ; Image analysis ; Microscopy ; Population balance modelling ; Spray-flame synthesis

Abstract in Englisch:

Thermally-induced breakup of metal-precursor-laden droplets in spray-flame synthesis occurs via a rapid and disruptive disintegration, i.e., “puffing” and “micro-explosion”. To assess the temporal evolution and statistics of droplet disruption, LED-illuminated droplet shadowgraphs were imaged with a microscope onto a high-speed camera and morphological image analysis was applied. The atomized liquid was a mixture of 35 vol.-% ethanol and 65 vol.-% 2-ethylhexanoic acid mixed with iron(III) nitrate nonahydrate (INN) as a precursor. Droplet evaporation and disruption were also simulated with a population balance model. The model finds solid precipitates forming in the droplets because of the decomposition of the precursor intermediate iron(III) 2-ethylhexanoate. The precipitates form a particle shell, which favors the superheating of the droplets’ interior, and they facilitate heterogeneous bubble nucleation. Imaging experiments and modelling find that per 10 µs lifetime of a droplet, the probability for disruption increases from 5 to 13% and 5 to 19%, respectively, when increasing the INN concentration from 0.05 to 0.5 mole/l. The probability of disruption suggests that throughout their lifetime in the spray flame, nearly all droplets will undergo disruption and many of them multiple times. In the experiment, droplets before disruption are 15% smaller than regular, non-disrupting droplets. Once disrupted, the droplets have a 45% smaller mean diameter than regular droplets. Under all conditions, disrupting and disrupted droplets are slower than regular droplets while the disruption does not significantly accelerate disrupted droplets.