Alavijeh, Nahid S.; Serrano Farinas, Alvaro; Peters, Max S.; Wölper, Christoph; Schrader, Thomas:
Design and Synthesis of Artificial Nucleobases for Sequence-Selective DNA Recognition within the Major Groove
In: Chemistry : An Asian Journal, Jg. 18 (2023), Heft 19, Artikel e202300637
2023Artikel/Aufsatz in ZeitschriftOA Hybrid
ChemieFakultät für ChemieForschungszentren » Zentrum für Medizinische Biotechnologie (ZMB)
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Design and Synthesis of Artificial Nucleobases for Sequence-Selective DNA Recognition within the Major Groove
Autor*in:
Alavijeh, Nahid S.
;
Serrano Farinas, AlvaroUDE
LSF ID
59590
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Peters, Max S.UDE
LSF ID
53231
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Wölper, ChristophUDE
LSF ID
52177
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Schrader, ThomasUDE
GND
130213233
LSF ID
16246
ORCID
0000-0002-7003-6362ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
korrespondierende*r Autor*in
Erscheinungsjahr:
2023
Open Access?:
OA Hybrid
Web of Science ID
PubMed ID
Scopus ID
Sprache des Textes:
Englisch
Schlagwort, Thema:
Base Pairs ; DNA Recognition ; Hoogsteen Site ; Major Groove ; Nucleic Acids ; Supramolecular Chemistry

Abstract in Englisch:

We present the design and synthesis of artificial specific nucleobases, each one recognizing a single base pair within the major groove of duplex DNA. Computational calculations indicate that PNAs modified with these nucleobases enable the formation of highly stable triple helices with no sequence restrictions through multiple hydrogen bonding and π⋅⋅⋅π stacking interactions, without significantly widening the DNA double helix. New synthetic routes were developed to the structures of these fused heterocycles which have rarely been described in the literature. NMR titration experiments indicate specific hydrogen bonding at the Hoogsteen sites. The new building blocks allow the construction of four PNA monomers for each canonic base pair and their covalent connection to PNA oligomers. These can be designed complementary to any given DNA sequence. With high efficiency and relative simplicity of operation, the described methodologies and strategies hence form the basis for a new supramolecular ligand system targeting double-stranded DNA without strand invasion.