Mannel, Hendrik; Kerski, Jens; Lochner (vorm. Eickelmann), Pia; Zöllner, Marcel; Wieck, A.D.; Ludwig, A.; Lorke, Axel; Geller, Martin Paul:
Auger and spin dynamics in a self-assembled quantum dot
In: Journal of Applied Physics, Jg. 134 (2023), Heft 15, Artikel 154304
2023Artikel/Aufsatz in ZeitschriftOA Hybrid
Physik (inkl. Astronomie)Forschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)Fakultät für Physik » Experimentalphysik
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Auger and spin dynamics in a self-assembled quantum dot
Autor*in:
Mannel, HendrikUDE
LSF ID
61570
ORCID
0000-0001-7106-6822ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
korrespondierende*r Autor*in
;
Kerski, JensUDE
GND
1305712102
LSF ID
58878
ORCID
0000-0002-5676-4988ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Lochner (vorm. Eickelmann), PiaUDE
LSF ID
58936
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Zöllner, MarcelUDE
LSF ID
62371
ORCID
0009-0005-0794-0075ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Wieck, A.D.
;
Ludwig, A.
;
Lorke, AxelUDE
GND
1042619697
LSF ID
2509
ORCID
0000-0002-0405-7720ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Geller, Martin PaulUDE
LSF ID
49871
ORCID
0000-0003-3796-1908ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2023
Open Access?:
OA Hybrid
Web of Science ID
Scopus ID
Sprache des Textes:
Englisch
Ressourcentyp:
Text

Abstract in Englisch:

The Zeeman-split spin states of a single quantum dot can be used together with its optical trion transitions to form a spin-photon interface between a stationary (the spin) and a flying (the photon) quantum bit. In addition to long coherence times of the spin state itself, the limiting decoherence mechanisms of the trion states are of central importance. Here, we investigate in time-resolved resonance fluorescence the electron spin and trion dynamics in a single self-assembled quantum dot in an applied magnetic field of up to B = 10 T. The quantum dot is only weakly coupled to an electron reservoir with tunneling rates of about 1 ms − 1 . Using this sample structure, we can measure, in addition to the spin-flip rate of the electron and the spin-flip Raman rate of the trion transition, the Auger recombination process that scatters an Auger electron into the conduction band. The Auger effect destroys the radiative trion transition and leaves the quantum dot empty until an electron tunnels from the reservoir into the dot. The combination of an Auger recombination event with subsequent electron tunneling from the reservoir can flip the electron spin and thus constitutes another mechanism that limits the spin lifetime.