Alinejad, Shima; Quinson, Jonathan; Li, Yao; Kong, Ying; Reichenberger, Sven; Barcikowski, Stephan; Broekmann, Peter; Arenz, Matthias:
Optimizing the use of a gas diffusion electrode setup for CO₂ electrolysis imitating a zero-gap MEA design
In: Journal of Catalysis, Band 429 (2024), Artikel 115209
2024Artikel/Aufsatz in ZeitschriftOA Hybrid
ChemieFakultät für Chemie » Technische ChemieForschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)Forschungszentren » Zentrum für Medizinische Biotechnologie (ZMB)
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Optimizing the use of a gas diffusion electrode setup for CO₂ electrolysis imitating a zero-gap MEA design
Autor*in:
Alinejad, Shima
;
Quinson, Jonathan
ORCID
0000-0002-9374-9330ORCID iD
;
Li, Yao
;
Kong, Ying
;
Reichenberger, SvenUDE
GND
1137216204
LSF ID
58243
ORCID
0000-0002-7166-9428ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Barcikowski, StephanUDE
GND
129006084
LSF ID
52773
ORCID
0000-0002-9739-7272ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
;
Broekmann, Peter
ORCID
0000-0002-6287-1042ORCID iD
;
Arenz, Matthias
ORCID
0000-0001-9765-4315ORCID iD
Sonstiges
korrespondierende*r Autor*in
Erscheinungsjahr:
2024
Open Access?:
OA Hybrid
Web of Science ID
Scopus ID
Sprache des Textes:
Englisch
Schlagwort, Thema:
CO2 reduction ; Electrolysis ; Gas diffusion electrode
Ressourcentyp:
Text

Abstract in Englisch:

The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO₂ reduction reaction (ECO₂RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. Zero-gap electrolyzer designs show promising features for upscaling to the commercial scale. In this study, we scrutinize further our recently introduced “zero-gap GDE” setup or more correct half-cell MEA design for the CO₂RR. Using an Au electrocatalyst as a model system we simulate the anode conditions in a zero-gap electrolyzer and identify/report the key experimental parameters to control the catalyst layer preparation to optimize the activity and selectivity of the catalyst. Among others, it is demonstrated that supported Au nanoparticles (NPs) result in significantly higher current densities when compared to unsupported counterparts, however, the supporting also renders the NPs prone to agglomeration during electrolysis.