Horn-von Hoegen, Michael:
Structural dynamics at surfaces by ultrafast reflection high-energy electron diffraction
In: Structural Dynamics / American Crystallographic Association (ACA) (Hrsg.). , Jg. 11 (2024), Heft 2, Artikel 021301
2024Review in ZeitschriftOA Gold
Physik (inkl. Astronomie)Forschungszentren » Center for Nanointegration Duisburg-Essen (CENIDE)Fakultät für Physik
Damit verbunden: 1 Publikation(en)
Titel in Englisch:
Structural dynamics at surfaces by ultrafast reflection high-energy electron diffraction
Autor*in:
Horn-von Hoegen, MichaelUDE
GND
1201039908
LSF ID
10366
ORCID
0000-0003-0324-3457ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
korrespondierende*r Autor*in
Erscheinungsjahr:
2024
Open Access?:
OA Gold
Scopus ID
Notiz:
OA Förderung 2024
Sprache des Textes:
Englisch
Ressourcentyp:
Text

Abstract in Englisch:

Many fundamental processes of structural changes at surfaces occur on a pico- or femtosecond timescale. In order to study such ultrafast processes, we have combined modern surface science techniques with fs-laser pulses in a pump-probe scheme. Grazing incidence of the electrons ensures surface sensitivity in ultrafast reflection high-energy electron diffraction (URHEED). Utilizing the Debye-Waller effect, we studied the nanoscale heat transport from an ultrathin film through a hetero-interface or the damping of vibrational excitations in monolayer adsorbate systems on the lower ps-timescale. By means of spot profile analysis, the different cooling rates of epitaxial Ge nanostructures of different size and strain state were determined. The excitation and relaxation dynamics of a driven phase transition far away from thermal equilibrium is demonstrated using the In-induced (8 X 2) reconstruction on Si(111). This Peierls-distorted surface charge density wave system exhibits a discontinuous phase transition of first order at 130 K from a (8 X 2) insulating ground state to (4 X 1) metallic excited state. Upon excitation by a fs-laser pulse, this structural phase transition is non-thermally driven in only 700 fs into the excited state. A small barrier of 40 meV hinders the immediate recovery of the ground state, and the system is found in a metastable supercooled state for up to few nanoseconds.